Comparative Analysis of the Recently Discovered hAT Transposon TcBuster in Human Cells
نویسندگان
چکیده
BACKGROUND Transposons are useful tools for creating transgenic organisms, insertional mutagenesis, and genome engineering. TcBuster, a novel hAT-family transposon system derived from the red flour beetle Tribolium castaneum, was shown to be highly active in previous studies in insect embryoes. METHODOLOGY/PRINCIPAL FINDINGS We tested TcBuster for its activity in human embryonic kidney 293 (HEK-293) cells. Excision footprints obtained from HEK-293 cells contained small insertions and deletions consistent with a hAT-type repair mechanism of hairpin formation and non-homologous end-joining. Genome-wide analysis of 23,417 piggyBac, 30,303 Sleeping Beauty, and 27,985 TcBuster integrations in HEK-293 cells revealed a uniquely different integration pattern when compared to other transposon systems with regards to genomic elements. TcBuster experimental conditions were optimized to assay TcBuster activity in HEK-293 cells by colony assay selection for a neomycin-containing transposon. Increasing transposon plasmid increased the number of colonies, whereas gene transfer activity dependent on codon-optimized transposase plasmid peaked at 100 ng with decreased colonies at the highest doses of transposase DNA. Expression of the related human proteins Buster1, Buster3, and SCAND3 in HEK-293 cells did not result in genomic integration of the TcBuster transposon. TcBuster, Tol2, and piggyBac were compared directly at different ratios of transposon to transposase and found to be approximately comparable while having their own ratio preferences. CONCLUSIONS/SIGNIFICANCE TcBuster was found to be highly active in mammalian HEK-293 cells and represents a promising tool for mammalian genome engineering.
منابع مشابه
Phylogenetic and functional characterization of the hAT transposon superfamily.
Transposons are found in virtually all organisms and play fundamental roles in genome evolution. They can also acquire new functions in the host organism and some have been developed as incisive genetic tools for transformation and mutagenesis. The hAT transposon superfamily contains members from the plant and animal kingdoms, some of which are active when introduced into new host organisms. We...
متن کاملTemporal self-regulation of transposition through host-independent transposase rodlet formation
Transposons are highly abundant in eukaryotic genomes, but their mobilization must be finely tuned to maintain host organism fitness and allow for transposon propagation. Forty percent of the human genome is comprised of transposable element sequences, and the most abundant cut-and-paste transposons are from the hAT superfamily. We found that the hAT transposase TcBuster from Tribolium castaneu...
متن کاملStructure and evolution of the hAT transposon superfamily.
The maize transposon Activator (Ac) was the first mobile DNA element to be discovered. Since then, other elements were found that share similarity to Ac, suggesting that it belongs to a transposon superfamily named hAT after hobo from Drosophila, Ac from maize, and Tam3 from snapdragon. We addressed the structure and evolution of hAT elements by developing new tools for transposon mining and se...
متن کاملComparative Analysis of Mesenchymal Stem Cells Isolated from Human Bone Marrow and Wharton’s Jelly
Introduction: Bone marrow (BM) is a known source of mesenchymal stem cells (MSCs) that are used for cell therapy. This study attempts to identify if the Wharton’s Jelly (WJ) is a suitable substitute for BM as a source for MSCs. Materials and Methods: A population of human WJ and BM stem cells were isolated and incubated with fluorescein conjugated antibodies for five specific MSC markers....
متن کاملTwo hAT transposon genes were transferred from Brassicaceae to broomrapes and are actively expressed in some recipients
A growing body of evidence is pointing to an important role of horizontal gene transfer (HGT) in the evolution of higher plants. However, reports of HGTs of transposable elements (TEs) in plants are still scarce, and only one case is known of a class II transposon horizontally transferred between grasses. To investigate possible TE transfers in dicots, we performed transcriptome screening in th...
متن کامل